新闻搜索
 
最新新闻
1  铁矿石下行趋势难改
2  锻造最全技术知识
3  国内外钛冶金技术发展
4  金属材料腐蚀磨损行为
5  邢钢搬迁至邢台新河县
6  降低高炉炼铁燃料比的
7  无取向电工钢向高性能
8  奥氏体不锈钢的氯化物
9  7月下旬,钢价涨跌幅
10  渗碳和渗氮最大的区别
热门新闻
1851  机械制造用钢具体分类
1349  WELDOX900板
908  螺纹钢HRB335,
831  6082化学成分与力
766  15M钢--40Mn
706  预计十二月中厚板钢材
659  2月27日SQ890
593  XAR400耐磨钢板
589  1Cr17不锈铁与不
565  天气转暖后,40Cr

新闻中心  

金属材料腐蚀磨损行为防护技术与方法
发布者:admin 发布时间:2019-10-15 13:34:30 阅读:1次 【字体:

(1)化学腐蚀磨损—在气体介质中的腐蚀磨损实际上以氧化磨损为主,主要是金属表面与气体介质发生氧化反应,在表面生成氧化膜,随后在磨料或微凸体作用下被去除的过程。根据膜的机械性质不同,氧化磨损模型主要有脆性氧化膜和氧化磨损模型和韧性氧化膜的氧化磨损两类。金属表面发生氧化生成的脆性氧化膜的物理机械性能与基体差别很大,生长到一定厚度时很容易被外部机械作用去除而暴露出金属基体,随后在新鲜集体上有开始新的氧化。韧性膜比基体要软,受外部机械作用时,可能只有部分氧化膜被去除,随后氧化过程有开始在氧化膜上进行,因此韧性膜的腐蚀磨损较脆性膜要轻微。
(2)电化学腐蚀磨损—电化学腐蚀磨损由于涉及的因素较多,是一个比氧化磨损更为复杂的过程,根据电化学腐蚀磨损过程中材料被去除的特点,人们提出了机械去除模型和腐蚀去除模型。在磨料作用下,材料表面膜局部被去除破坏,但随即又重新形成新的表面膜。而磨料是均匀作用在真个材料表面上,当任意一块表面被磨料破坏了表面膜而裸露出金属基体时,此处的腐蚀速度比有表面膜覆盖的地方快得多,因此,在整个过程中,腐蚀磨损比纯磨损对材料的破坏严重得多。图4是具有碳化物多相结构的高铬铸铁发生晶间腐蚀的腐蚀磨损模型,由于碳化物的电极电位大大高于基体金属的电极电位,因此在碳化物相组织和基体相之间将发生晶间腐蚀,之后材料在磨料或硬质点机械作用下发生断裂。随磨损过程不断进行,塑性材料将发生强烈的塑性变形,主要集中在犁沟两侧隆起部位或冲蚀坑外缘,这些形变强烈区域具有较高的位错密度和腐蚀活性,成为阳极,其他部位成为阴极,共同构成“应变差电池”。阳极首先受到腐蚀破坏,之后在磨料的作用下,很容易形成“二次磨损”。

1.2 腐蚀磨损的研究背景和现状

腐蚀磨损现象广泛存在于石油、化工、煤矿、电力、冶金等工业领域的机械设备中,是造成材料损失和设备失效的主要原因之一。据报道,美国每年约有23万吨钢材,全世界仅在选矿设备这一项就有45万吨钢因腐蚀磨损而受到破坏,如同时考虑其它工业部门的腐蚀磨损,无疑是一个巨大的经济损失。
腐蚀磨损造成材料的加速损坏已经引起了人们极大的关注和重视。但由于腐蚀磨损是一个物理、机械、化学和电化学作用的综合作用,各种因素的影响错综复杂,这就给研究工作带来了极大的困难,近几十年来人们不断探索并就此问题进行了一些初步研究。
P.F.Weiser等人用CF-8铸铁在硫酸砂浆与单独硫酸腐蚀和单独湿磨料磨损条件下进行对比试验,结果表明,材料的腐蚀磨损速度是纯腐蚀和纯磨损速度之和的8-35倍。
 K.Y.Kim等人用电化学方法研究了材料在腐蚀磨损条件下的腐蚀行为,发现磨料的机械作用使腐蚀速度增加了2-4个数量级 。
陈文革研究了M50NiL和16CrNi4Mo铜经不同工艺热处理对气蚀和腐蚀性能的影响,结果表明两种钢抗气蚀性能最佳的处理工艺都是低温淬火加低温回火。
张天成、姜晓霞等人测量了不同载荷下40Cr钢和304不锈钢在3.5%NaCl溶液中的腐蚀磨损率,用Tafel法和极化阻率法测定了静态及磨损状态下的腐蚀率,并用浸泡实验结果予以了修正。定量分析了两种材料在溶液中的腐蚀磨损交互作用。

2 金属的腐蚀磨损

2.1 腐蚀磨损机理

金属腐蚀磨损机理的研究一直是人们争议的焦点,早期人们提出的“表面膜机械去除模型”和“氢致磨损理论”并不能解释腐蚀磨损材料流失形式中出现的各种问题,之后人们都把腐蚀磨损机理的研究集中在金属表面膜的性能、修复及再生速率上,但实际上表面膜破坏及修复的电化学研究结果也并不能圆满的解释腐蚀磨损的各种问题。大量的实验和工程实践逐渐使人们认识到腐蚀磨损研究的核心应该是腐蚀和磨损的交互作用(协同效应),而不是表面膜的行为。

2.1.1 腐蚀磨损交互作用的定量描述

        在单纯的腐蚀作用中,失重与腐蚀时间的关系通常是凹曲线,而一般的干磨损(在空气中磨损)材料流失量与载荷(速度)大多呈线性关系。腐蚀磨损则不符合这两种规律,它们间的交互作用通常都表现为加速, 用下式表示:
W=Wcorr+Wwear+△W
△W=△Wc+△Ww
式中       W —腐蚀磨损造成材料的总流失量;
           Wcorr —单纯的腐蚀失重(静态下腐蚀);
           Wwear—单纯的磨损失重(在空气中干磨损);
          △W —交互作用失重;
          △Ww—腐蚀对磨损的加速(磨损增量);
          △Wc —磨损对腐蚀的加速(腐蚀增量);
从前面的公式可以得出:腐蚀磨损造成的材料流失量绝不是单纯腐蚀及干磨损失重之和,而且实践证明,它们之间的交互作用(协同作用) 即腐蚀加速磨损,磨损促进腐蚀,从而加速材料的破坏的作用比单纯腐蚀和磨损对材料的破坏作用大得多。
因此要控制腐蚀磨损就必须弄清二者交互作用的机制,即发生和发展过程,才能从材料选择、表面处理、各种保护措施及机械结构设计上寻求对策。

2.1.2 磨损加速腐蚀

磨损加速腐蚀已是不容争议的事实,实验证明加速的原因主要包括以下几个方面:
磨损减薄作用或破坏钝化膜或除去表面产物而裸露出新鲜的金属表面;
溶液搅动加速了传质过程,使工件表面的腐蚀产物(离子)迅速离去,腐蚀介质很快得到补充,即去极化剂很容易到达金属表面,加速金属的腐蚀。对于以氧扩散为控制反应的中性介质如海水等溶液的腐蚀磨损,机械搅拌作用对传质的加速尤其具有重要意义。
此外,磨损过程会使塑性材料表面产生的强烈塑性变形主要集中在犁沟两侧隆起部位或冲蚀坑的外缘,使这些部位产生微裂纹、位错和空位等缺陷,具有较高的腐蚀活性成为阳极,其余部位称为阴极,构成“应变差电池”。

2.1.3 腐蚀加速磨损

最直观理解腐蚀会加速磨损莫过于腐蚀后的材料表面疏松、多孔,很容易在磨料或其它微凸体的作用下被去除而增加材料流失量。

腐蚀会增加金属表面的粗糙度,再由于金属组织结构的不均匀性,腐蚀会破坏晶界、相界或其它组织的完整性,降低其结合强度。如果发生组织的选择性腐蚀,大多是合金基体溶解(属阳极相),而在表面残留碳化物或其他第二相颗粒(属阴极相),当磨头滑过或粒子冲击时很容易被剥落而增加磨损量。在形成钝化膜的体系中,由于表面剪切力把钝化膜成片撕裂,甚至扩展到磨痕以外,因此也会增加磨损量。

形变强化的金属材料由于腐蚀尤其均匀腐蚀会除去表面薄薄的硬化层,裸露出未变形强化、或形变程度较小,硬度较低的表面层从而降低耐磨性,这是腐蚀加速磨损的又一种表现。

2.1.4 腐蚀磨损中的“负”交互作用

腐蚀磨损交互作用通常都表现为彼此加速,这是普遍规律。但实验发现有些情况下在腐蚀介质中的材料流失量比空气中的干磨损还小,在铁合金和不锈钢中都观察到这种现象。这种现象的出现一般是在腐蚀介质弱、因腐蚀造成的损失小,而材料流失量以磨损为主的条件下。与空气中的磨损失重相比,介质改变了对摩副之问的表面状态,降低了摩擦系数,从而减少了磨损失重。介质的润滑在轻载和高速下充分表现出减摩效果,再加上介质冷却作用,材料流失就有可能小于相同运动参数(速度和载荷)下的干磨损,即产生所谓的“负”交互作用。

2.2 腐蚀磨损的影响因素

材料的腐蚀磨损的影响因素较多,它既与腐蚀介质的种类,介质中固体颗粒特性、介质流速,以及固体颗粒对基材冲击角有关,也与材料本身的成分、组织结构、力学机械性能有关,纵观国内外研究工作都是围绕着这些因素开展的。

 

 
 

 

 


打印本页 || 关闭窗口